US009106668B2

a2 United States Patent

Chalouhi et al.

US 9,106,668 B2
Aug. 11, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

DISTRIBUTED PEER LOCATION IN
PEER-TO-PEER FILE TRANSFERS

Inventors: Olivier Chalouhi, Redwood City, CA
(US); Paul Anton Richardson
Gardner, Palo Alto, CA (US)

Assignee: Azureus Software, Inc., Truckee, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1496 days.

Appl. No.: 12/328,492

Filed: Dec. 4, 2008

Prior Publication Data
US 2009/0319502 A1l Dec. 24, 2009

Related U.S. Application Data

Provisional application No. 61/075,295, filed on Jun.
24, 2008, provisional application No. 61/133,314,
filed on Jun. 27, 2008.

Int. Cl1.

GO6F 15/16 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC ... HO4L 67/104 (2013.01); HO4L 67/1002

(2013.01); HO4L 67/1046 (2013.01); HO4L
67/1065 (2013.01); H04L 67/101 (2013.01)
Field of Classification Search
CPC . HO4L 67/104; HO4L 67/1065; HO4AL 67/101;
HOA4L 67/1046
USPC 709/204, 223-224
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2006/0149806 Al* 7/2006 Scottetal. 709/201
2008/0037527 Al* 2/2008 Chanetal. 370/353
2008/0040420 Al* 2/2008 Twissetal. . .. 709/203
2008/0086464 Al* 4/2008 Enga ... 707/4
2008/0177767 Al* 7/2008 Linetal. 709/251
2009/0276522 Al* 11/2009 Seidelccoovviiviin 709/224

FOREIGN PATENT DOCUMENTS

WO WO-2009158261 A1 12/2009

OTHER PUBLICATIONS

“BitTorrent Location-aware Protocol 1.0 Specification”, http://wiki.
theory.org/BitTorrent_ Location-aware_ Protocol__1.0__Specifica-
tion, last modified Oct. 22, 2008, accessed Dec. 5, 2008, 6 pgs.
“Network Coordinates in the Wild”, http://www.cecs.harvard.
edu/~syrah/nc/wild-web/, last updated Feb. 23, 2007, accessed Dec.
5, 2008, 49 pgs.
Bindal, Ruchir, et al., “Improving Traffic Locality in BitTorrent via
Biased Neighbor Selection”, 26th IEEFE International Conference on
Distributed Computing Systems, 2006. ICDCS 2006, (Jul. 2006), 10
pgs.

(Continued)

Primary Examiner — Philip B Tran
(74) Attorney, Agent, or Firm — Schwegman Lundberg &
Woessner, P.A.

(57) ABSTRACT

A method and system for facilitating peer-to-peer networking
among local peers are described. Hashes are generated from
adigital content file and virtual coordinates of virtual nodes in
a virtual coordinate system. The generated hashes are then
used to retrieve peer connection information.

27 Claims, 13 Drawing Sheets

‘GLIENT MACHINE

P2P CLIENT
PROGRAM

102k

PEER LOCATION
MODULE

/—1 00

124
[—04
[N-108

108-

110—\

NETWORK (E.G., INTERNET)

122

DISTRIBUTED HASH TABLE (DHT)

PEER NODES

TRACKER
SERVER

P2P TRACKER
PROGRAM

124
1

J@,

124
124 FLE

111

US 9,106,668 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Choffnes, David, et al., “Taming the Torrent A practical approach to
reducing cross-ISP traffic in peer-to-peer systems”, ACM
SIGCOMM Computer Communication Review vol. 38, Issue 4,
(Oct. 2008), 14 pgs.

Cox, Russ, et al., “Practical, Distributed Network Coordinates”,
ACM SIGCOMM Computer Communication Review vol. 34, Issue
1, (Jan. 2004), 6 pgs.

Dabek, Frank, et al., “Vivaldi: A Decentralized Network Coordinate
System”, SIGCOMM 2004, Portland, OR, (Aug. 30-Sep. 3,2004), 12
pgs.

Doi, Kenji, et al., “Proximity-Aware Content Addressable Network
Based on Vivaldi Network Coordinate System”, Fifth International

Workshop on Databases, Information Systems and Peer-to-Peer
Computing (DBISP2P 2007), Vienna (Austria), (Sep. 24, 2007), 10
pgs.

Su, Ao-Jan, et al., “Drafting Behind Akamai (Travelocity-Based
Detouring)”, SIGCOMM 2006, Pisa, Italy, (Sep. 11-15, 2006), 12
pgs.

“International Application Serial No. PCT/US2009/047742, Search
Report mailed Jul. 28, 2009”.

“International Application Serial No. PCT/US2009/047742, Written
Opinion mailed Jul. 28, 2009”.

“PCT Application Serial No. PCT/US2009/047742, International
Preliminary Report on Patentability Received May 2, 20117, 12 pgs.

* cited by examiner

U.S. Patent Aug. 11, 2015 Sheet 1 of 13 US 9,106,668 B2

CLIENT MACHINE

P2P CLIENT

1 02\ PROGRAM

PEER LOCATION
MODULE

108

NETWORK (E.G., INTERNET)

122
1 101
/ A y
DISTRIBUTED HASH TABLE (DHT) TRACKER
SERVER
126 130 449 P2P TRACKER
PROGRAM
PEER PEER PEER PEER
A B Cc D
<
PEER NODES CLE
128 124 120
111 -g 116
- > PEER MACHINE
FILE = 4 117
124— siost |\ | 104
— T
T PEER MACHINE PEER LIST 118
P2pP 1
124— ™° ST, :
— 10 ()
111

FIG. 1

U.S. Patent Aug. 11, 2015 Sheet 2 of 13 US 9,106,668 B2
102
CLIENT MACHINE
104
P2P CLIENT
PROGRAM
PEER LOCATION COORDINATE
106 | MODULE MODULE 212
SETTINGS MODULE FILTERING MODULE 214
208" | v
DISTRIBUTED HASH
210_/— TABLE MODULE HASHING MODULE Lf216

FIG. 2

U.S. Patent Aug. 11, 2015 Sheet 3 of 13 US 9,106,668 B2

102 122
1 04\ CLIENT MACHINE / /

P2P CLIENT
PROGRAM
A
340 g 342 |
312
Y f L 2 /_ v f v y
SEED PEER PEER SEED PEER PEER
<> <> <> <>
0 [X A) % [A }
308 L é
TRACKER
SERVER
120
330 332 334 336
P2P
TRACKER

114—" | | PROGRAM

y

-

PEERLIST

5118

DTS WN -

N——_

FIG. 3

U.S. Patent Aug. 11, 2015 Sheet 4 of 13 US 9,106,668 B2

400\

GENERATE HASHES FROM A
FILE AND VIRTUAL
402_/, COORDINATES OF VIRTUAL

NODES

Y

404 RETRIEVE PEER CONNECTION
- INFORMATION USING THE
HASHES

FIG. 4

U.S. Patent

500\

Aug. 11, 2015 Sheet S of 13

US 9,106,668 B2

so— |

CONNECT TO INITIAL PEERS TO
DISTRIBUTE A FILE

A J

DETERMINE RELATIVE
DISTANCES BETWEEN
CONNECTED PEERS IN A
VIRTUAL COORDINATE SYSTEM

A

FIND LOCAL PEERS USING
COORDINATES AND A
DISTRIBUTED HASH TABLE

CONNECT TO LOCAL PEERS
AND DISTRIBUTE FILE

FIG. 5

U.S. Patent Aug. 11, 2015 Sheet 6 of 13 US 9,106,668 B2

FILTER PEERS

6002»
PEERS PARTICIPATING IN
CLIENT MACHINE . THE DHT
602'/\ \/1 10
SELECT TORRENT FILE
so2—, SELE . | | &)\
-—>| CONNECT TO PEERS }—-——»{ RECEIVE CONNECTION REQUEST‘

I’ ___ i
L N Y) 1 |
6 504 608 '
606 TRANSMIT VIRTUAL . |
| > COORDINATES AND REQUEST S RECEIVE REQUEST B
5 DATA | ¥ 610— |
! |
614) UPDATE VIRTUAL COORDINATES | !
i RECEIVE DATA - |
| . ,, l ‘ 612— !
| 1616 ¥ TRANSMIT DATA AND VIRTUAL | !
. |
| | | UPDATE VIRTUAL COORDINATES . COORDINATES :
U TP 1
il — ¢ ******************** 1 Ty T
I
| LOCATE VIRTUAL NODES |« - 506 |
I) :
ete~ l ;
! N 620 i
: HAVE PRIORITIES OR :
| LOCATED NODES | |
; CHANGED? i
= . !
! i
| 622 | |
l : :
I . H
| CREATE HASHES) 626 |
| 624— Y ? |
' |FIND PEERS IN DHT ASSOCIATED I STORE CLIENT TRACKING |
! WITH HASHES — INFORMATION IN DHT |
!]
i l v ;
! TRANSMIT LIST OF STORED | !
i RECEIVE PEER TRACKING DATA |« o NG DATA |
|
| i
| 630J 634 | 628J |
| 632 2 |
| ; |
: NUMBER OF PEERS \ ADJUST E
: VIRTUAL .
QUTSIDE PREDEFINED — i
| RANGE? NODE l I
' COORDS |
: * |
: | i
! 6362 |
| . |
I .]
i ‘ . F[G 6 }
| |

U.S. Patent Aug. 11, 2015 Sheet 7 of 13 US 9,106,668 B2

5021 202

ATTEMPT TO CONNECT TO
TRACKER

704

ARE THERE REMAINING
TRACKERS LISTED IN
FILE?

706 _ [RECEIVE PEER LIST FROM
TRACKER

v
708 _ [CONNECT TO PEERS ON
TRACKER PEER LIST

710 ARE THERE SAVED DH
PEERS FROM PREVIOUS

SESSIONS OR FILES?

712
7 714
\ Y

RETRIEVE DHT PEERS FROM DHT BOOTSTRAP FROM TRACKER
MODULE PEERS

716
COMPUTE NEW RANDOM r
IDENTIFICATION NUMBER

T8~ Y
CONNECT TO NEIGHBORING

PEERS IN DHT OVERLAY
NETWORK.

FIG. 7

U.S. Patent Aug. 11, 2015 Sheet 8 of 13 US 9,106,668 B2
126 616
PEER
A 808
128
48 ms
62 ms 130
PEER
B \
76 ms.
\\\\\\\\\\\~\\ PEER
c
126
PEER 132
A 808
128
48 ms
PﬁER S ms 130
PEER ////////////
i \
76 ms
\\\\\\\\\‘\\\\ PEER
c
812 132
126
PEER
A
\
52 ms 816
\
/ PEEI’ER 130
1 28 48 ms 62 ms \
/ 76 ms 27{"
//////;:>>// PEER
PEER ms———— | C
B

FIG. 10

U.S. Patent Aug. 11, 2015 Sheet 9 of 13 US 9,106,668 B2

618
[

RETRIEVE VIRTUAL NODE
1102—" " POSITIONS IN THE COORDINATE
SYSTEM

y

~_~ _DIVIDE FOUR-DIMENSIONAL
1104 COORDINATE SPACE INTO TWO
INDEPENDENT PLANES

A

CALCULATE EUCLIDEAN
| DISTANCES FROM CURRENT
1106 COORDINATES TO VIRTUAL
NODES

FIG. 11

U.S. Patent Aug. 11, 2015 Sheet 10 of 13 US 9,106,668 B2

Y 1 2 3 4%AXIS 5 6 7 8

FIG. 12

CLIENT MACHINE'S CAPTURE ZONE

PEER B'S CAPTURE ZONE

U.S. Patent Aug. 11, 2015

622
[

Sheet 11 of 13

1302—"

RETRIEVE FILE PRIORITY
SETTINGS FROM SETTINGS
MODULE

/

1304—"

DETERMINE HOW MANY VIRTUAL
NODES TO USE BASED ON FILE
PRIORITY

/

1306—")

SELECT CLOSEST VIRTUAL
NODES FROM EACH
INDEPENDENT PLANE

1308—")

PAIR VIRTUAL NODES FROM
EACH INDEPENDENT PLANE

Y

1310—)

CREATE A HASH FROM THE
COMBINATION OF THE FILE'S
NAME AND THE COORDINATES
OF EACH PAIR OF VIRTUAL
NODES

FIG. 13

US 9,106,668 B2

U.S. Patent Aug. 11, 2015 Sheet 12 of 13 US 9,106,668 B2

1402
110
BUCKET 0 y
1 1408
0 1
CLIENT
MACHINE
110 111
<j410 PEER NODES IN A 102 Z/
1420 DISTRIBUTED HASH TABLE 1428
1414
-
DATA DATA \
KEY: FILE ID KEY: FILE ID
001 101
1430
1416 1418 1432
VALUE: VALUE:
PEERLIST PEER LIST
OF IP/ OF 1P/
PORTS FOR PORTS FOR
FILE 001 1434 FILE 101
1436

FIG. 14

U.S. Patent

Aug. 11, 2015

Sheet 13 of 13

US 9,106,668 B2

V/ 1500

PROCESSOR VIDEG
1502 < > I > DISPLAY
1524 —INSTRUCTIONS
MAIN MEMORY ALPHA-NUMERIC
1504 < > < * INPUT DEVICE
1524 —lINSTRUCTIONS
1508 —
CURSOR
1506 — MSJG(T)EY < »BUS|e CONTROL
DEVICE
DRIVE UNIT
COMPUTER-
NETWORK READABLE
DEVICE
INSTRUCTIONS'l‘I‘1524
SIGNAL
1526 » GENERATION
DEVICE

FIG. 15

—

1510

— 1512

— 1514

— 1516

1522

— 1518

US 9,106,668 B2

1

DISTRIBUTED PEER LOCATION IN
PEER-TO-PEER FILE TRANSFERS

This application claims the priority benefit of U.S. Provi-
sional Application No. 61/075,295, filed Jun. 24, 2008 and
U.S. Provisional Application No. 61/133,314, filed Jun. 27,
2008, which are incorporated herein by reference in their
entirety.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
files or records, but otherwise reserves all copyright rights
whatsoever. The following notice applies to the software and
data as described below and in the drawings that form a part
of this document: Copyright 2008, Vuze, Inc. All Rights
Reserved.

TECHNICAL FIELD

Example embodiments relate generally to peer-to-peer
(P2P) file transfers over a network (e.g., the Internet).

BACKGROUND

BitTorrent is currently one of the most popular methods of
distributing large files over the Internet. For a given file, the
BitTorrent protocol embodies four main roles: an initial
seeder, new seeders, a tracker, and peers. Initial seeders, new
seeders, and peers are all transient clients; trackers are typi-
cally web servers. The initial seeder is the source of the file,
and operates by dividing a file into small pieces, creating a
metadata description of the file and sending this description to
the tracker. Peers discover this file metadata description, usu-
ally as a .torrent file, through some out-of-band mechanism
(e.g., aweb page) and then begin looking for pieces of the file.
Peers contact a central tracker to bootstrap their knowledge of
other peers and seeds, and the tracker returns a randomized
subset of other peers and seeds. Initially, only the initial
seeder has pieces of a file, but soon peers are able to exchange
missing pieces with each other. Once a peer acquires all of the
pieces of a file, it becomes a new seeder. This collection of
clients actively sharing a file is called a swarm.

In some client-based peer-to-peer (P2P) systems (e.g., the
VUZE® client developed by Vuze, Inc. of Palo Alto, Calif.),
file descriptors and other metadata are stored in a distributed
hash table (DHT), in which all clients participate, and any
node can be assigned the role of tracker if its unique identi-
fication number is equal or close to the hash of a given file’s
descriptor. This is mainly used as a backup mechanism when
the original tracker is offline or otherwise not responding to
requests for the file. However, the DHT is also a way to
distribute a file without a central tracker at all or to locate
additional peers that are not connected to a tracker.

Vivaldi is a virtual positioning algorithm that computes a
position for every peer in the system such that the distance
between two peers equals their round trip network ping time
(RTT).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1is anetwork diagram illustrating a peer participating
in a BitTorrent transfer over the Internet, according to an
example embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 is a block diagram of modules, according to an
example embodiment, contained in a peer-to-peer (P2P) cli-
ent program running on a client machine.

FIG. 3 is a network diagram illustrating a BitTorrent swarm
containing peers and seeds connected to each other and a
tracker, according to an example embodiment.

FIG. 4 is a flowchart of'a method, according to an example
embodiment, of facilitating peer-to-peer networking through
local peers.

FIG. 5 is a flowchart overview of a method, according to an
example embodiment, of using peer location to find local
peers.

FIG. 6 is a dual-lane flowchart of operations, according to
an example embodiment, that are performed to find local
peers.

FIG. 7 is a flowchart of operations, according to an
example embodiment, that are performed to connect to peers
received from trackers and the distributed hash table (DHT).

FIG. 8 is ablock diagram showing three peers participating
in a DHT arranged by round trip time (RTT) latency approxi-
mations, according to example an embodiment.

FIG. 9 is a block diagram of a new peer being added to the
DHT, according to an example embodiment.

FIG. 10 is a block diagram of the updated positions for the
four peers in the DHT after pinging and adjusting locations
based on RTT latency approximations, according to an
example embodiment.

FIG. 11 is a flowchart of operations, according to an
example embodiment, performed to locate the nearest virtual
nodes to a client in a virtual coordinate system.

FIG. 12 is a Cartesian coordinate plane representing a
virtual coordinate system depicting three peers and the cap-
ture zones for two of them, according to an example embodi-
ment.

FIG. 13 is a flowchart of operations, according to an
example embodiment, performed to prioritize files and create
hashes for use in the DHT.

FIG. 14 is ablock diagram ofa DHT tree showing node IDs
and distance buckets, according to an example embodiment.

FIG. 15 shows a diagrammatic representation of a machine
in the exemplary form of a computer system.

DETAILED DESCRIPTION

A method and system, according to an example embodi-
ment, use a network coordinate system to locate low latency
peers in order to increase the portion of peer-to-peer file
sharing occurring among local peers. The located peers may
be using the same Internet Service Provider (ISP), within the
same autonomous system (AS), or connected through peering
agreements. An example embodiment uses a virtual coordi-
nate mapping algorithm and a distributed hash table to allow
peers to discover other local peers participating in a peer-to-
peer networking environment using the BitTorrent protocol.
In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the present invention. It will be
evident, however, to one skilled in the art that the present
invention may be practiced without these specific details.

FIG. 1 is a block diagram illustrating a peer-to-peer (P2P)
networking environment 100 within which a P2P client pro-
gram 104 running on a client machine 102 is connected to a
swarm 122 comprising a group of peers 111, 126, 128, 130,
132 in order to distribute a file 124 over a network 108. The
P2P client 104 may be connected to the swarm 122 after
receiving Internet Protocol (IP) addresses and ports identify-
ing peers from a tracker server 114 and a distributed hash

US 9,106,668 B2

3

table network 110 (DHT). The P2P client 104 will also send
its IP address and port information to the tracker server 114,
which will add the P2P client 104 to the peer list 118 for that
file 124. Existing and newer peers may then connect to the
client machine 102 to send and receive pieces of the file 124
being distributed.

FIG. 2 is a block diagram of modules, according to an
example embodiment, contained in a P2P client program 104
running on a client machine 102. The P2P client program 104
contains modules to perform the operations of an example
embodiment, including a peer location module 106 to retrieve
peer connection information for located peers, a settings
module 208 to store preferences such as file priorities, a
distributed hash table module 210 for connecting to and com-
municating with the DHT 110, a hashing module 216 for
creating hashes, a coordinate module 212 for calculating net-
work latencies and positions in a virtual coordinate system,
and filtering module 214 to prioritize discovered peers.

FIG. 3 is a block diagram illustrating a BitTorrent swarm
122 within which example embodiments may be deployed
and within which peers 330, 332, 334, 336 and seeds 340, 342
are connected to one another and to a tracker server 114 over
anetwork 108. For each torrent file, there may be listed more
than one tracker server 114 running different P2P tracker
programs 120 that contain unique peer lists 118 of each
swarm member in a database 116. Multiple tracker servers
114 provide redundancy in case one of the servers becomes
unreachable over the Internet. It is also possible for a torrent
file to specify no trackers and instead rely on distribution
methods that use the distributed hash table network 110, for
example.

Seeds 340, 342 are a subset of peers that have received all
pieces ofthe file 124 and are thus only uploading data to peers
330, 332, 334, 336 in the swarm 122. Non-seeding peers may
have only partially completed the file 124 and are therefore
both uploading and downloading data from the swarm. When
a peer finishes downloading, it becomes a new seed and no
longer needs to be connected to other seeds. All peers, includ-
ing the seeds, may periodically contact the tracker server 114
to update their knowledge of the peer list 118.

FIG. 4 illustrates a flowchart of the operations of a method
400, used in an example embodiment, to facilitate peer-to-
peer networking through local peers. A client program 104
generates hashes from a file 124 and virtual coordinates of
virtual nodes (operation 402) then retrieves peer connection
information using the hashes (operation 404).

FIG. 5 illustrates a flowchart of the operations of a method
500, used in an example embodiment, to discover local peers
using peer location. A client program 104 initially connects to
other peers using the distributed hash table (DHT) module
210 to distribute a file 124 (operation 502). Next, the client
program 104, using coordinate module 212, determines the
relative distances between the client machine 102 and peers
with which the client program 104 communicates through the
DHT 110. The coordinate module 212 uses these distances to
calculate a position for the client machine 102 in a virtual
coordinate system 1100 (see FIG. 11). Using the hashing
module 216, the client program 104 creates hashes from the
file 124 and nearby virtual nodes 1110 in the virtual coordi-
nate system 1100. The client program 104 then requests lists
of peers from the DHT 110 using the hashes as keys (opera-
tion 506). Finally, the client program 104 connects to the
peers on the lists and continues to distribute the file 124
(operation 508).

FIG. 6 is a dual-lane flowchart depicting in greater detail
the operations ofthe method 500, illustrated in FIG. 5. Opera-
tions on the left side of FIG. 6 are executed on the client

10

15

20

25

30

35

40

45

50

55

60

65

4

machine 102, while operations on the right side are executed
on remote machines belonging to other peers participating in
the P2P distributed hash table network 110. At operation 602,
auser selects a torrent file and executes a client program 104.
The user may have created the torrent file from one ofhis own
files, or he may have downloaded it from the Internet.

At operation 502, the client program 104 connects to other
peers over the network, as illustrated in FIG. 7. If the selected
torrent file lists any tracker Uniform Resource Locators
(URLs) the client program 104 attempts to connect to each
tracker server 114 at operation 702. The client program 104
receives a peer list 118 from each tracker server 114, and the
tracker server 114 adds the IP address and port number of the
client machine 102 to the list. The peer list 118 sent by the
tracker server 114 may contain every peer on the tracker’s list
if there are only a few peers connected; otherwise, it may
contain a random set of peers. Each peer on this list is cur-
rently participating in the distribution of the file 124 or was
recently participating and has not yet been removed from the
peer list 118 by the tracker server 114. At operation 708, the
client program 104 connects to some of the received peers on
the list, the number depending on preferences stored in the
settings module 208.

At operation 710, the client program 104 checks the dis-
tributed hash table module 210 to determine if there are any
saved DHT peers from previous sessions or files. If so, the
client program 104 retrieves the DHT peers from the DHT
module 210. If not, the client program 104 must bootstrap its
knowledge of the DHT from the tracker peers (operation
714), and then compute a new random, unique identification
number (operation 716). At operation 718, the client program
104 connects to neighboring peers in the DHT overlay net-
work.

Referring back to FIG. 6, peers participating in the DHT
receive the client program 104 connection request and store
the client’s peer connection information (IP address and port
number) and identification number (operation 604) in the
DHT.

After connecting to peers, the client program 104 begins or
resumes sending and receiving pieces of the file 124 being
distributed. At operation 606, the client program 104 requests
data from other peers and transmits its current virtual coor-
dinates if they have been previously calculated. The remote
peer receives this request (operation 608) and determines the
latency between itself and the client machine 102. In remote
procedure call-based systems (RPC), the latency can be deter-
mined by timing the RPC; in a stream oriented system, the
remote peer may echo a timestamp. The remote peer updates
its own virtual coordinates using the latency and the coordi-
nates of the client machine 102 (operation 610) using a virtual
positioning algorithm (e.g., the Vivaldi algorithm). The
remote peer then transmits the requested data back to the
client program 104 along with the updated virtual coordinates
of the remote peer (operation 612). At operation 614, the
client program 104 receives the data sent by the remote peer.
At operation 616, the client program 104 updates its virtual
coordinates based on the latency and coordinates of the
remote peer. The process of updating virtual coordinates is
illustrated in FIG. 8.

FIG. 8 is a virtual network position graph that shows three
peer nodes 126, 128, 130 that have computed their virtual
coordinates using a virtual positioning algorithm such that the
distances between nodes in the virtual coordinate system are
similar to their round trip ping times 808 (RTT). Whenever
the peers communicate (e.g., through data transfers or DHT
ping, find, get, and store requests), they update their virtual
coordinates based on the RTT of the packets sent.

US 9,106,668 B2

5

FIG. 9 is a virtual network position graph illustrating a new
peer 132 connecting to the DHT network 110 with no location
information. In this example, the new peer 132 first deter-
mines its starting coordinates by contacting peers A, B, and C.
After exchanging location information, in FIG. 10, the four
peers have calculated new coordinates that accurately reflect
their ping times 808, 812, 814, and 816.

At operation 618, the client program 104 locates the near-
est virtual nodes 1210. FIG. 11 is a flowchart of an example
embodiment that uses the Vivaldi virtual positioning algo-
rithm with four dimensions. At operation 1102, the client
program 104 retrieves the virtual node positions in the coor-
dinate system from the coordinate module 212. The virtual
nodes 1210 are arranged in a fixed pattern that is known to the
coordinate module 212, an example of which can be seen in
FIG. 12. The example four-dimensional coordinate space is
divided into two independent planes at operation 1104, one of
which is shown as a two-dimensional Cartesian coordinate
plane 1216 in FIG. 12. At operation 1106, the client program
104 calculates the Euclidean distances 1208 between it and
the virtual nodes 1210.

In the FIG. 12 example, client machine 102 is closest to
virtual nodes X, Y, and Z (1210q, 12105, 1210¢). In an
example embodiment utilizing the nearest three virtual nodes
1210 in each plane, the solid hexagon represents the client
machine’s capture zone 1212. Any peer located within the
hexagon’s boundaries shares a close virtual node 1210 with
the client machine 102. In this example, one of three closest
virtual nodes 1210 to peer B 128 is virtual node Y 12105,
which is shared with the client machine 102; therefore, peer B
128 is also within the client machine’s capture zone 1212, and
the client machine 102 is within peer B’s capture zone 1214.
Peer C 130, on the other hand, shares no close virtual nodes
1210 with the client machine 102 or peer B, and is therefore
outside of their capture zones. Peers outside of the capture
zone 1212 are not local peers; peers within the capture zone
1212 may be local peers, but the final determination will
depend on priorities, filtering, and whether the peer is also
within the capture zone of the other independent plane.

If both the closest nodes to the client machine 102 and
priorities from the settings module 208 remain unchanged,
the client program 104 continues to distribute the file 124
among already connected peers. If either the closest nodes or
priorities have changed since the last update, the client pro-
gram 104 will create new hashes (operation 622) and attempt
to locate new local peers.

FIG. 13 is a flowchart illustrating the hashing process using
FIG. 12 as an example. First, file priority settings are retrieved
from the settings module 208 at operation 1302, and the
number of virtual nodes 1210 to be used in the hashing pro-
cess is calculated at operation 1304. In one example embodi-
ment, a client program 104 distributing a small number of
files will select three virtual nodes 1210 from each plane
1216, whereas a client program 104 distributing a larger
number of files simultaneously may reduce DHT traffic by
only selecting one or two virtual nodes 1210 (operation
1306). These virtual nodes 1210 may be prioritized by prox-
imity to the client in the virtual positioning system with closer
nodes receiving higher priority. A client may choose to pub-
lish its own connection information using a different number
of virtual nodes 1210 than from which it receives peer con-
nection information. A client may also publish or receive peer
connection information for one subset of virtual nodes 1210
and then later publish or receive peer connection information
using a different subset.

In one example embodiment, four dimensions calculated
using the Vivaldi algorithm are divided into two independent

20

30

40

45

65

6

planes with a triangular mesh pattern, as can be seen in FIG.
12. A client program 104 running on client machine 102 will
calculate the nearest three virtual nodes X, Y, and Z (1210a,
12105, 1210¢) in one plane 1216 and virtual nodes 1, 2,and 3
in the other plane (not shown). In this diagram, virtual node X
1210a s located at virtual coordinates (5, 4) in the plane 1216.
Virtual nodeY 12105 is located at (4, 3), and virtual node Z
1210c¢ is located at (6, 3). These six nodes (X, Y, Z, 1, 2, and
3) are paired into nine combinations as X1, X2, X3,Y1,Y2,
Y3, 71, 72, and 73 (operation 1308). A hash, an integer
representation of data, is calculated for each node pairing
using the file 124 (or filename) and the virtual coordinates of
the node pair as input to a hashing algorithm (operation
1310). The trade-off of having more dimensions and nodes is
more accurate peer location but also more network traffic
within the DHT.

FIG. 14 is a network partition of a DHT 110 containing
peer nodes 1420, 1422, 1424, 1426, 1428, and the client
machine 102. In this simplified example, the nodes are
indexed in the DHT with a three-bit ID 1410, 1414 (typical
implementations use 160 bits).

In a file sharing DHT network, the task of indexing the
table of available files is distributed among all clients. A hash
is computed for each file and is of the same size as the node
IDs. If a user wishes to share a file 1430, 1432 among users of
the DHT 110, the client uses the file’s hash as a key 1430,
1432 to find the ID of a node that is most similar to the file
hash, and the client stores its connection information in that
node’s database 1416, 1418 as values. The similarity is deter-
mined by a distance algorithm that computes the exclusive-or
(XOR) of the file hash and the node ID; smaller values are
closer matches. In FIG. 14, the peer list 1436 for file 1432
with the hash of ‘101 is stored in the node 1426 with the ID
‘101’ because the file hash and node ID match; the peer list
1434 for file 1430 with the hash of ‘001’ is stored in the node
1420 with the ID ‘000’ because node ID ‘001 does not exist
and ‘000’ is the closest match. In typical implementations,
DHT keys and values are stored in the closest twenty nodes to
the hash to provide for redundancy in a network that regularly
loses and gains nodes and also to defend against malicious
nodes that attempt to disrupt the network. Peers also retrieve
data from the closest twenty nodes.

In an example embodiment of using local peer discovery,
the hashes created at operation 622 are used as keys in the
DHT 110. For each key, the client program peer location
module 106 finds the peer node associated with the key (op-
eration 624) and requests the list of peers associated with the
hash. The peers onthese lists are distributing the same file 124
as the client program 104, and they are local peers because
they are located near the client machine 102 in the virtual
coordinate system.

At operation 626, the DHT peer node stores the client’s
connection information so that other peers may later discover
the client machine 102 through local peer discovery. At opera-
tion 628, the DHT peer node transmits peer connection infor-
mation for the list of stored peers, which is received by the
client machine 102 at operation 630.

Ifthe number of peers received from the DHT is outside of
a predefined range (either too many or too few), the client
program 104 adjusts the coordinates of the virtual nodes 1110
in order to decrease or increase its capture zone 1212 (opera-
tion 634). This allows the system to dynamically compensate
for geographic regions that may be densely or sparsely popu-
lated. If this is necessary, the client program 104 repeats
operation 506.

After receiving a number of peers within the predefined
range from the DHT 110, the peers may be filtered and pri-

US 9,106,668 B2

7

oritized (operation 636) using information such as IP
addresses and domain name system (DNS) lookups to deter-
mine the ISP and AS of the peers. This operation prioritizes
peers that are determined to be connected to the network
using the same ISP as the client machine 102 and removes any
erroneously discovered peers. Accordingly, the latency
between prioritized peers is short and those peers are likely to
be using the same ISP or located within the same AS, thus
reducing cross-ISP traffic. The client program 104 then con-
nects to the remaining peers to continue distributing the file
124.

Peer-to-peer file sharing programs such as BitTorrent typi-
cally ignore network latency in favor of throughput because
receiving the entire file as fast as possible is more important
than receiving any individual piece quickly. However, this
preference also ignores traffic costs at ISPs and generates a
large amount of cross-ISP traffic. As a result, ISPs often
throttle BitTorrent traffic as a way to control costs from high
bandwidth users. By implementing a method of discovering
local peers in file transtfers, ISPs will save money on band-
width charges and users may experience faster download
rates because a greater amount of traffic will remain within
the ISP or autonomous system.

The difficulty involved with finding local peers is that IP
addresses and DNS information often maps to physical loca-
tion incorrectly, which makes them unreliable sources. Also,
a single autonomous system number may span a large geo-
graphic area. Furthermore, since trackers return random peers
from the swarm, a client may not know that local peers are
connected to the swarm at all, and pinging every client con-
nected to a DHT is an expensive network operation.

Some solutions to this problem involve the cooperation of
the trackers to improve their peer selection algorithms, but
since there are many tracker websites and tracker software
applications on the Internet, convincing them to change is
difficult. The method described above is a client-side solution
that does not require the participation of trackers to be effec-
tive.

Modules, Components and Logic

Certain embodiments are described herein as including
logic or anumber of components, modules, or mechanisms. A
component is a non-transitory and tangible unit capable of
performing certain operations and may be configured or
arranged in a certain manner. In example embodiments, one
or more computer systems (e.g., a standalone, client or server
computer system) or one or more components of a computer
system (e.g., a processor or a group of processors) may be
configured by software (e.g., an application or application
portion) as a component that operates to perform certain
operations as described herein.

In various embodiments, a component may be imple-
mented mechanically or electronically. For example, a com-
ponent may comprise dedicated circuitry or logic that is per-
manently configured (e.g., as a special-purpose processor) to
perform certain operations. A component may also comprise
programmable logic or circuitry (e.g., as encompassed within
a general-purpose processor or other programmable proces-
sor) that is temporarily configured by software to perform
certain operations. It will be appreciated that the decision to
implement a component mechanically, in dedicated and per-
manently configured circuitry, or in temporarily configured
circuitry (e.g., configured by software) may be driven by cost
and time considerations.

Accordingly, the term “component” should be understood
to encompass a tangible entity, be that an entity that is physi-
cally constructed, permanently configured (e.g., hardwired)
or temporarily configured (e.g., programmed) to operate in a

10

15

20

25

30

35

40

45

50

55

60

65

8

certain manner and/or to perform certain operations
described herein. Considering embodiments in which com-
ponents are temporarily configured (e.g., programmed), each
of the components need not be configured or instantiated at
any one instance in time. For example, where the components
comprise a general-purpose processor configured using soft-
ware, the general-purpose processor may be configured as
respective different components at different times. Software
may accordingly configure a processor, for example, to con-
stitute a particular component at one instance of time and to
constitute a different component at a different instance of
time.

Components can provide information to, and receive infor-
mation from, other components. Accordingly, the described
components may be regarded as being communicatively
coupled. Where multiple of such components exist contem-
poraneously, communications may be achieved through sig-
nal transmission (e.g., over appropriate circuits and buses)
that connect the components. In embodiments in which mul-
tiple components are configured or instantiated at different
times, communications between such components may be
achieved, for example, through the storage and retrieval of
information in memory structures to which the multiple com-
ponents have access. For example, one component may per-
form an operation, and store the output of that operation in a
memory device to which it is communicatively coupled. A
further component may then, at a later time, access the
memory device to retrieve and process the stored output.
Components may also initiate communications with input or
output devices, and can operate on a resource (e.g., a collec-
tion of information).

Electronic Apparatus and System

Example embodiments may be implemented in digital
electronic circuitry, or in computer hardware, firmware, soft-
ware, or in combinations of them. Example embodiments
may be implemented using a computer program product, e.g.,
a computer program tangibly embodied in an information
carrier, e.g., in a machine-readable medium for execution by,
or to control the operation of, data processing apparatus, e.g.,
a programmable processor, a computer, or multiple comput-
ers.

A computer program can be written in any form of pro-
gramming language, including compiled or interpreted lan-
guages, and it can be deployed in any form, including as a
stand-alone program or as a module, subroutine, or other unit
suitable for use in a computing environment. A computer
program can be deployed to be executed on one computer or
on multiple computers at one site or distributed across mul-
tiple sites and interconnected by a communication network.

In example embodiments, operations may be performed by
one or more programmable processors executing a computer
program to perform functions by operating on input data and
generating output. Method operations can also be performed
by, and apparatus of example embodiments may be imple-
mented as, special purpose logic circuitry, e.g., an FPGA
(field programmable gate array) or an ASIC (application-
specific integrated circuit).

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In embodiments
deploying a programmable computing system, it will be
appreciated that that both hardware and software architec-
tures require consideration. Specifically, it will be appreci-
ated that the choice of whether to implement certain function-

US 9,106,668 B2

9

ality in permanently configured hardware (e.g., an ASIC), in
temporarily configured hardware (e.g., a combination of soft-
ware and a programmable processor), or a combination per-
manently and temporarily configured hardware may be a
design choice. Below are set out hardware (e.g., machine) and
software architectures that may be deployed, in various
example embodiments.

Example Machine Architecture and Machine-Readable
Medium

FIG. 15 is a block diagram of machine in the example form
of a computer system 1500 within which instructions, for
causing the machine to perform any one or more of the meth-
odologies discussed herein, may be executed. In alternative
embodiments, the machine operates as a standalone device or
may be connected (e.g., networked) to other machines. In a
networked deployment, the machine may operate in the
capacity of a server or a client machine 102 in server-client
network environment, or as a peer machine in a peer-to-peer
(or distributed) network environment. The machine may be a
personal computer (PC), a tablet PC, a set-top box (STB), a
Personal Digital Assistant (PDA), a cellular telephone, a web
appliance, a network router, switch or bridge, or any machine
capable of executing instructions (sequential or otherwise)
that specify actions to be taken by that machine. Further,
while only a single machine is illustrated, the term “machine”
shall also be taken to include any collection of machines that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methodologies
discussed herein.

The example computer system 1500 includes at least one
processor 1502 (e.g., a central processing unit (CPU), a
graphics processing unit (GPU) or both), a main memory
1504 and a static memory 1506, which communicate with
each other via a bus 1508. The computer system 1500 may
further include a video display unit 1510 (e.g., a liquid crystal
display (LCD) or a cathode ray tube (CRT)). The computer
system 1500 also includes an alphanumeric input device 1512
(e.g., a keyboard), a user interface (UI) navigation device
1514 (e.g., a mouse), a disk drive unit 1516, a signal genera-
tion device 1518 (e.g., a speaker) and a network interface
device 1520.

Machine-Readable Medium

The disk drive unit 1516 includes a machine-readable
medium 1522 on which is stored one or more sets of instruc-
tions and data structures (e.g., software 1524) embodying or
utilized by any one or more of the methodologies or functions
described herein. The software 1524 may also reside, com-
pletely or at least partially, within the main memory 1504
and/or within the processor 1502 during execution thereof by
the computer system 1500, the main memory 1504 and the
processor 1502 also constituting machine-readable media.

While the machine-readable medium 1522 is shown in an
example embodiment to be a single medium, the term
“machine-readable medium” may include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more instructions or data structures. The term “machine-
readable medium” shall also be taken to include any tangible
medium that is capable of storing, encoding or carrying
instructions for execution by the machine and that cause the
machine to perform any one or more of the methodologies of
the present invention, or that is capable of storing, encoding or
carrying data structures utilized by or associated with such
instructions. The term “machine-readable medium” shall
accordingly be taken to include, but not be limited to, solid-
state memories, and optical and magnetic media. Specific
examples of machine-readable media include non-volatile

40

45

55

10

memory, including by way of example semiconductor
memory devices, e.g., EPROM, EEPROM, and flash memory
devices; magnetic disks such as internal hard disks and
removable disks; magneto-optical disks; and CD-ROM and
DVD-ROM disks.
Transmission Medium

The software 1524 may further be transmitted or received
over a communications network 1526 using a transmission
medium. The software 1524 may be transmitted using the
network interface device 1520 and any one of a number of
well-known transfer protocols (e.g., HTTP). Examples of
communication networks include a local area network
(“LAN"), a wide area network (“WAN"), the Internet, mobile
telephone networks, Plain Old Telephone (POTS) networks,
and wireless data networks (e.g., WiFi and WiMax networks).
The term “transmission medium” shall be taken to include
any intangible medium that is capable of storing, encoding or
carrying instructions for execution by the machine, and
includes digital or analog communications signals or other
intangible medium to facilitate communication of such soft-
ware.
Example Three-Tier Software Architecture

In some embodiments, the described methods may be
implemented using one a distributed or non-distributed soft-
ware application designed under a three-tier architecture
paradigm. Under this paradigm, various parts of computer
code (or software) that instantiate or configure components or
modules may be categorized as belonging to one or more of
these three tiers. Some embodiments may include a first tier
as an interface (e.g., an interface tier). Further, a second tier
may be a logic (or application) tier that performs application
processing of data inputted through the interface level. The
logic tier may communicate the results of such processing to
the interface tier, and/or to a backend, or storage tier. The
processing performed by the logic tier may relate to certain
rules, or processes that govern the software as a whole. A
third, storage tier, may be a persistent storage medium, or a
non-persistent storage medium. In some cases, one or more of
these tiers may be collapsed into another, resulting in a two-
tier architecture, or even a one-tier architecture. For example,
the interface and logic tiers may be consolidated, or the logic
and storage tiers may be consolidated, as in the case of a
software application with an embedded database. The three-
tier architecture may be implemented using one technology,
or, a variety of technologies. The example three-tier architec-
ture, and the technologies through which it is implemented,
may be realized on one or more computer systems operating,
for example, as a standalone system, or organized in a server-
client, peer-to-peer, distributed or so some other suitable con-
figuration. Further, these three tiers may be distributed
between more than one computer systems as various compo-
nents.
Components

Example embodiments may include the above described
tiers, and processes or operations about constituting these
tiers may be implemented as components. Common to many
of these components is the ability to generate, use, and
manipulate data. The components, and the functionality asso-
ciated with each, may form part of standalone, client, server,
or peer computer systems. The various components may be
implemented by a computer system on an as-needed basis.
These components may include software written in an object-
oriented computer language such that a component oriented,
or object-oriented programming technique can be imple-
mented using a Visual Component Library (VCL), Compo-
nent Library for Cross Platform (CLX), Java Beans (IB),

US 9,106,668 B2

11

Enterprise JavaBeans (EJB), Component Object Model
(COM), Distributed Component Object Model (DCOM), or
other suitable technique.

Software for these components may further enable com-
municative coupling to other components (e.g., via various
Application Programming interfaces (APIs)), and may be
compiled into one complete server, client, and/or peer soft-
ware application. Further, these APIs may be able to commu-
nicate through various distributed programming protocols as
distributed computing components.

Distributed Computing Components and Protocols

Some example embodiments may include remote proce-
dure calls being used to implement one or more of the above
described components across a distributed programming
environment as distributed computing components. For
example, an interface component (e.g., an interface tier) may
form part of a first computer system that is remotely located
from a second computer system containing a logic compo-
nent (e.g., a logic tier). These first and second computer
systems may be configured in a standalone, server-client,
peer-to-peer, or some other suitable configuration. Software
for the components may be written using the above described
object-oriented programming techniques, and can be written
in the same programming language, or a different program-
ming language. Various protocols may be implemented to
enable these various components to communicate regardless
of the programming language used to write these compo-
nents. For example, a component written in C++ may be able
to communicate with another component written in the Java
programming language through utilizing a distributed com-
puting protocol such as a Common Object Request Broker
Architecture (CORBA), a Simple Object Access Protocol
(SOAP), or some other suitable protocol. Some embodiments
may include the use of one or more of these protocols with the
various protocols outlined in the Open Systems Interconnec-
tion (OSI) model, or Transmission Control Protocol/Internet
Protocol (TCP/IP) protocol stack model for defining the pro-
tocols used by a network to transmit data.

A System of Transmission Between a Server and Client

Example embodiments may use the OSI model or TCP/IP
protocol stack model for defining the protocols used by a
network to transmit data. In applying these models, a system
of data transmission between a server and client, or between
peer computer systems may for example include five layers
comprising: an application layer, a transport layer, a network
layer, a data link layer, and a physical layer. In the case of
software, for instantiating or configuring components, having
a three tier architecture, the various tiers (e.g., the interface,
logic, and storage tiers) reside on the application layer of the
TCP/IP protocol stack. In an example implementation using
the TCP/IP protocol stack model, data from an application
residing at the application layer is loaded into the data load
field of a TCP segment residing at the transport layer. This
TCP segment also contains port information for a recipient
software application residing remotely. This TCP segment is
loaded into the dataload field of an IP datagram residing at the
network layer. Next, this IP datagram is loaded into a frame
residing at the data link layer. This frame is then encoded at
the physical layer, and the data transmitted over a network
such as an internet, Local Area Network (LAN), Wide Area
Network (WAN), or some other suitable network. In some
cases, internet refers to a network of networks. These net-
works may use a variety of protocols for the exchange of data,
including the aforementioned TCP/IP, and additionally ATM,
SNA, SDI, or some other suitable protocol. These networks
may be organized within a variety of topologies (e.g., a star
topology), or structures.

10

15

20

25

30

35

40

45

50

55

60

65

12

Although an embodiment has been described with refer-
ence to specific example embodiments, it will be evident that
various modifications and changes may be made to these
embodiments without departing from the broader spirit and
scope of the invention. Accordingly, the specification and
drawings are to be regarded in an illustrative rather than a
restrictive sense. The accompanying drawings that form a
part hereof, show by way of illustration, and not of limitation,
specific embodiments in which the subject matter may be
practiced. The embodiments illustrated are described in suf-
ficient detail to enable those skilled in the art to practice the
teachings disclosed herein. Other embodiments may be uti-
lized and derived therefrom, such that structural and logical
substitutions and changes may be made without departing
from the scope of this disclosure. This Detailed Description,
therefore, is not to be taken in a limiting sense, and the scope
of various embodiments is defined only by the appended
claims, along with the full range of equivalents to which such
claims are entitled.

Such embodiments of the inventive subject matter may be
referred to herein, individually and/or collectively, by the
term “invention” merely for convenience and without intend-
ing to voluntarily limit the scope of this application to any
single invention or inventive concept if more than one is in
fact disclosed. Thus, although specific embodiments have
been illustrated and described herein, it should be appreciated
that any arrangement calculated to achieve the same purpose
may be substituted for the specific embodiments shown. This
disclosure is intended to cover any and all adaptations or
variations of various embodiments. Combinations of the
above embodiments, and other embodiments not specifically
described herein, will be apparent to those of skill in the art
upon reviewing the above description.

The invention claimed is:
1. A method to facilitate peer-to-peer networking, the
method comprising:
automatically generating, by one or more processors, a
plurality of hashes, each hash being generated from both
a digital content file and virtual coordinates of one of a
plurality of virtual nodes in a virtual coordinate system,
wherein the plurality of virtual nodes are selected by
calculating distances between a plurality of peers to
determine a location in the virtual coordinate system,
calculating respective distances between the location
and the plurality of virtual nodes, and selecting the plu-
rality of nodes based on the respective distances; and
retrieving peer connection information using the plurality
of hashes.
2. The method of claim 1, wherein the peer-to-peer net-
working uses the BitTorrent protocol.
3. The method of claim 1, wherein the virtual coordinate
system is a four-dimensional virtual coordinate system.
4. The method of claim 3, further comprising:
dividing the four-dimensional virtual coordinate system
into two independent two-dimensional coordinate
planes;
arranging the plurality of virtual nodes in a triangular mesh
pattern; and
combining three virtual nodes of the plurality of virtual
nodes in each plane which are closest to a peer to create
nine combinations.
5. The method of claim 1, further comprising:
updating the coordinates of the plurality of virtual nodes
when retrieving peer connection information using a
hash retrieves a number of peers outside a predefined
range.

US 9,106,668 B2

13

6. The method of claim 1, wherein the peer connection
information is retrieved from a distributed hash table net-
work.

7. The method of claim 1, further comprising:

storing first peer connection information for a first client
machine using the plurality of hashes.

8. The method of claim 7, wherein the first peer connection

information is stored in a distributed hash table network.

9. The method of claim 1, further comprising:

prioritizing the hashing of a number of virtual nodes of the
plurality of virtual nodes used for hashing based on a
number of digital content files currently being distrib-
uted.

10. The method of claim 1, further comprising:

filtering the peer connection information based on at least
one of Internet Protocol addresses or domain name sys-
tem lookups.

11. The method of claim 1, further comprising:

connecting to peers using the peer connection information;
and

distributing the digital content file using the peer-to-peer
network.

12. The method of claim 1, wherein the peer connection
information consists of an Internet Protocol address and a
port number.

13. The method of claim 1, wherein the distances between
a plurality of peers is equal to the latency between the peers.

14. A system to facilitate peer-to-peer networking, the sys-
tem comprising:

one or More processors;

a hashing module, implemented by the one or more pro-
cessors, to automatically generate a plurality of hashes,
each hash being generated from both a digital content
file and coordinates of one of a plurality of virtual nodes
in a virtual coordinate system, wherein the plurality of
virtual nodes are selected by calculating distances
between a plurality of peers to determine a location in
the virtual coordinate system, calculating respective dis-
tances between the location and the plurality of virtual
nodes, and selecting the plurality of nodes based on the
respective distances; and

a peer location module, implemented by the one or more
processors, to retrieve peer connection information
using the plurality of hashes.

15. The system of claim 14, wherein the peer-to-peer net-

working uses the BitTorrent protocol.

16. The system of claim 14, wherein the virtual coordinate
system is a four-dimensional virtual coordinate system.

17. The system of claim 16, further comprising a coordi-
nate module to:

divide the four-dimensional virtual coordinate system into
two independent two-dimensional coordinate planes;

arrange the plurality of virtual nodes in a triangular mesh
pattern; and

20

25

30

35

40

45

50

14

combine three virtual nodes in each plane which are closest
to a peer to create nine combinations used in a hashing
operation.

18. The system of claim 14, further comprising a coordi-
nate module to:

update the coordinates of the plurality of virtual nodes

when retrieving peer connection information using a
hash retrieves a number of peers outside a predefined
range.

19. The system of claim 14, wherein the connection infor-
mation is retrieved from a distributed hash table network.

20. The system of claim 14, wherein the peer location
module also stores first peer connection information for a first
client machine using the plurality of hashes.

21. The system of claim 20, wherein the first peer connec-
tion information is stored in a distributed hash table network.

22. The system of claim 14, further comprising:

prioritizing the hashing of a number of virtual nodes of the

plurality of virtual nodes used for hashing based on a
number of digital content files currently being distrib-
uted.

23. The system of claim 14, further comprising:

filtering the peer connection information based on at least

one of Internet Protocol addresses or domain name sys-
tem lookups.

24. The system of claim 14, further comprising:

connecting to peers using the peer connection information;

and

distributing the digital content file using the peer-to-peer

network.

25. The system of claim 14, wherein the peer connection
information consists of an Internet Protocol address and a
port number.

26. The system of claim 14, wherein the distances between
a plurality of peers is equal to the latency between the peers.

27. A method to facilitate peer-to-peer networking, the
method comprising:

using one or more processors to execute instructions

retained in machine-readable media to perform at least
some portion of:

generating automatically a plurality of hashes, each hash

being generated from both a digital content file and
virtual coordinates of one of a plurality of virtual nodes
in a virtual coordinate system, wherein the plurality of
virtual nodes are selected by calculating distances
between a plurality of peers to determine a location in
the virtual coordinate system, calculating respective dis-
tances between the location and the plurality of virtual
nodes, and selecting the plurality of nodes based on the
respective distances; and

retrieving peer connection information using the plurality

of hashes.

